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ABSTRACT 

The types of  geometrical irregularity arising from the production of pipe bends are 
briefly discussed and formulae are presented which facilitate the calculation of  
stresses caused by each individual irregularity, when the pipe is subjected to internal 
pressure. 

The individual formulae are combined to enable the stress distribution to be 
calculated in a pipe bend under internal pressure with all the irregularities discussed. 
Results given from the formulae for a typical pipe bend are compared with results 
obtained by the finite element method. 

The requirements and limitations of British Standards are discussed in comparison 
with the predictions of  the formulae derived in this paper. 

NOMENCLATURE 

a Semi-major axis of ellipse, internal dimension. 
b Semi-minor axis of ellipse, internal dimension. 
D Mean internal diameter. 
E Young's modulus. 
(E) Elliptic integral of second kind. 
e Eccentricity. 
(K) Elliptic integral of first kind. 

any - b 2 k 

M o Fixing moment. 
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Internal pressure. 
Inside radius. 
Outside radius. 
Mean radius. 
Arc length. 
Thickness. 
Wall thickness at intrados of bend. 
Wall thickness at extrados of bend. 
Mean wall thickness. 
Wall thickness at any angle, 0. 
Strain energy in bending. 
Displacements. 
Deviation from radius of mean cross-section. 
Co-ordinate directions. 
Strains. 
Bipolar co-ordinates. 
Angles. 
Angle around the cross-section measured outwards from major axis. 
Poisson's ratio. 
Hoop stress. 
Membrane stress. 
Bending stress. 

Any other notation is defined as it appears. 

I.  INTRODUCTION 

During the manufacture of pipe bends the cross-section of the pipe may flatten 
considerably in the plane of the bend due to the bending operation. This flattened 
cross-section may take a variety of forms depending on the tools used to perform the 
bending operation, but often the resulting shape approximates to an ellipse. Also 
during bending, plastic flow in the wall of the pipe causes wall thinning on the 
outside of  the bend (extrados) and thickening on the inside (intrados). These effects 
are shown in Fig. 1. 

When the pipe bend is subjected to internal pressure these effects give rise to 
variations in stress around the cross-section, the overall result of which is to produce 
maximum stresses higher than those which one would expect to find had these effects 
not been present. In addition to this, the very nature of a pipe bend, as a section of  a 
toroid, induces stresses which would not be present if the pipe were straight. 

To obtain a complete theoretical solution to this problem is a very difficult task 
and an alternative method is to obtain a solution for each geometrical irregularity 
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Fig. 1. Features of pipe before and after bending. 

when considered independently and then, with caution, superpose these 
independent results to obtain an approximate solution to the problem. This paper 
commences by deriving formulae for the hoop stresses in: 

(i) a straight tube of elliptical cross-section 
(ii) a straight tube of circular cross-section but with variations in wall thickness 
(iii) a circular section toroid 

The solutions obtained from these formulae are compared with the alternative 
solutions available, including the results of  a finite element analysis. Finally, the 
formulae for each individual irregularity are combined to enable stresses to be 
calculated in a pipe bend having all the geometrical irregularities mentioned. 

Conclusions are drawn about the accuracy and usefulness of the solutions in 
comparison with the results which would be obtained by the use of  British 
Standards, where the effects of  ovality are not considered quantitatively. 

2. OVALITY OF CROSS-SECTION 

A solution to this problem was suggested by Haigh 1 in 1936. 
Suppose that the mean radius r I of an oval cylinder can be described by the 

nominal radius plus a cosine term (see Fig. 2), i.e. 

D 
r 1 = ~- + X1 cos 20 
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Fig. 2. Notation for Haigh's analysis. 

When subjected to internal pressure the cylinder will tend to become more circular in 
shape, giving a new value for the radius, assumed by Haigh to be: 

D 
r e = ~- + X 2cos20 

By considering the equilibrium of an element of the cylinder wall, the change in 
ovality after pressurisation, X1 - X2, can be found in terms of the initial ovality, X1, 
only. The change in curvature evaluated from this can be used to find the bending 
stress in the cylinder wall by substitution into the simple bendin8 equations. 

An expression for the bending stress in the cylinder wall obtained by this method 

a b -  t ~ "  p(l - v 2) 3 .cos20 

1 +  E 

(A full derivation of this formulae is given in reference 2, page 39). In order to check 
the results obtained from Haigh's method it seemed desirable to seek some 
alternative method of  solution and an obvious choice was to apply Castigliano's 
theorem using the strain energy of bending. 

The accuracy of the results obtained by applying Castigliano's theorem to rings 
and cylinders is well documented and so its application in this particular case 
provides a useful yardstick against which results from Haigh's method and from 
finite element calculations can be compared. 

This analysis was not found in any other literature, and for this reason it is given 
here in full. 

Consider the bending moment at section x x  as shown in Fig. 3. 

is given by: 
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Fig. 3. Notation for strain energy analysis. 

( a  - x )  
Mxx = M 0 - p a . ( a -  x) + p(a - x ) . ~  

f r o m  the  e q u a t i o n  for  a n  ellipse. 

a2b 2 
r 2 

a 2 s in 2 0 + b 2 cos  2 0 

f r o m  Fig.  3 

x = r cos 0 a n d  y = r sin 0 

f r o m  eqn .  (1): 

by  Cas t i g l i ano ' s  t h e o r e m  

OMx~ - 1 

OMo 

OU 
OM 

where :  

A t  the  p o i n t  0 = 0, Mx~ = M o a n d  4~ = O. 

~ll r i M  OMx~dSoM o 4' = 0 = --~. xx 

N o w  ds  = r .  dO 

Y +py.  (1) 

(2) 
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l M o - p a  ( a - x ) +  p ~b = 0 = E~ o " ~ . ( a - x ) 2 +  r.dO 

from eqn. (2): 

;i( 3 
• p F  2 , ~  Pa2r -t- ~-COS V 0 = Mor - pa2r + par 2 cos 0 + 

- P  2ar2cosO +--2-sm 0 . d O =  M o r - P a 2 r  + P-r 3 dO 
2" 2 " 

Now remembering that r =f (O) :  

f :  ( a 2 b  2 ,~,/2 Pa2 ( a2b 2 )1/2 
0 = M 0 a2sin2•+-b2cosZO] a2sin2 0 + b2cos2 0 

+ p (  a262 )3/2 

a 2 sin 2 0 + b 2 cos 2 0 . dO 

It is now possible to find the value of  M o, the unknown fixing moment, by evaluating 
the three terms of  the integral independently. This is done by transforming the first 
two terms and the last term into complete elliptic integrals of  the first and second 
kinds, respectively. 

This finally gives integrals of the form: 

where: 

l 
0 = 2Mob (1 k 2 n 2 ,)1/2 d~k - pa2b I - ~ (1 - k 2 sin z ~b) 1/z d~b 

/2 1 
+ pb3 (1 - k z sin 2 ~b) 3/2 d~k 

k 2 a 2 _ b 2 
~b = ~ - 0 and = a2 

After inserting the values of  k 2 appropriate to the problem the values of  the definite 
integrals may be obtained from tables of  complete elliptic integrals under the 
headings (K) and (E) for the first and second types, respectively. 

The final form of  the integrals is given as: 

0 = 2Mob(K) - p a 2 b ( K )  + pb3 
I ( L3 

and the unknown fixing moment is found to be of  the form: 

Mo = (constant). (pa 2) 
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Hence, by substituting the value of M o into eqn. (1) the value of the bending 
moment, Mxx , and consequently the stress, may be found for any point on the 
elliptical wall. 

3. VARIATION OF WALL THICKNESS 

A tube with the same variation of wall thickness as that found in a pipe bend can be 
considered as a cylinder with an eccentric bore. Bending stresses are induced in the 
wall of the cylinder when it is subjected to internal pressure but the calculation of 
these stresses is a difficult task and has only been carried out successfully by using the 
methods of Jefferey 3 utilising the bipolar co-ordinates and real stress functions or 
those of Timoshenko and Goodier 4 using complex potential stress functions. The 
results obtained by either method are identical. 

The maximum stresses in the cylinder wall are the hoop stresses on the inside face. 
Using Timoshenko and Goodier's notation, these are given by: 

2 (cosh ~i - cos t/) 
tro = - p  + ,p (s~+-si -n-~2-~o)  .(sinh ~ c o t h ( ~ -  ~o) + cost/) 

where any point on the cross-section of the cylinder is defined in terms of the bipolar 
co-ordinates ~ and t/where: 

x + iy = ia coth ~/2 

and 

~ =~. + it/ 

The subscripts i and o refer to the co-ordinates of the inside and outside boundaries, 
respectively. 

(A full analysis of complex potential stress functions and their application to this 
specific problem is given in reference 2, Appendix 4.A. 1.) 

Calculations using Timoshenko and Goodier's approach show that for wall 
thinning ratios of: 

tmax/tmin <__ 3 

the bending stresses are small (less than 6 % of the membrane stresses). I f the bending 
stresses are neglected, then the distribution of stress around the cylinder wall may be 
calculated from: 

pd 

where t is the actual thickness at any angle 0, as shown in Fig. 4, and may be found 
from: 

2 e 2 t 2 + t ( 2 r ~ + 2 e s i n O ) + ( r  2 - r  o + + 2 e r ,  s i n O ) = O  



174 A. AUSTIN, J. H. SWANNELL 

I 

~- INSIDE CIRCLE 

I 

Fig. 4. Part of  an eccentric bore cylinder. 

Alternatively, Lam6's method may be used to calculate the hoop stresses, by 
assuming, for instance, that t and r i are correct and the effective ro = r i + t. The 
justification of this latter method lies in comparisons with finite element results, not 
given in detail in this paper. 

4. EFFECTS DUE TO TOROIDAL SHAPE 

The bending stresses present in the wall of a circular section toroid may be evaluated 
either by solving exactly the governing equations for an element of the cylinder wall 
or by applying the theory of axisymmetric thin shells in which some of the governing 
equations are simplified. However, the problems which are to be encountered in 
formulating and solving the differential equations in this kind of approach are of 
such proportions that a membrane solution to this problem is usually regarded as 
acceptable, although thin shell solutions have been obtained by some workers in the 
field (see for example reference 5). 

A membrane solution is obtained by considering the vertical equilibrium of an 
element of the toroid wall (see Fig. 5). 

It can be shown that: 

7z[(R + a) 2 - R 2].p = 2n(R + a)t~osinO 

Simplifying: 

npa(a + 2R) = 21ttao(R + a)s in  0 

pa(a + 2R) 
go = 2t sin O(a + R)  
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but a = rs in0,  giving: 

p, . I-: sin O_ +_ I 
ae = 2t L v sin 0 + R J 

This result is simply a product of the thin shell membrane stress for a straight tube 
and a factor which may be greater or less than one depending on the sign of  0. 
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R 

Fig. 5. Section of  a toroidal shell. 

It should be noted that the membrane solution leads to a displacement 
discontinuity at the ends of  the diameter which is perpendicular to the plane of 
bending. Since this discontinuity cannot occur, local bending stresses are created in 
this region but, apart from the finite element method, the values are not easily found. 
This effect is illustrated clearly in Fig. 9. 

5. COMPARISON OF RESULTS 

A particular pipe bend was chosen, typical of  those found in high pressure steam 
generating plant, so that comparisons could be made between the various analytical 
solutions and a finite element solution. The dimensions and properties of the bend 
are as shown in Fig. 6. 

The three types of geometrical irregularity were then considered individually and 
the appropriate methods of  solution applied to each, using the following data. 

(i) A straight tube of elliptical cross-section and uniform wall thickness: 

a = 68.5 mm 
b = 60.9 mm 
t =tm = 16mm 
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Fig. 6. Notation for analysis of a complete pipe bend. 

(ii) A straight circular tube with varying wall thickness: 

a = b -- 68.5mm 

t~ = 24 mm 

t o = 8 mm 

The grossly exaggerated wall thinning was found necessary in order to make a good 
comparison between the two analytical methods. 

(iii) A circular section toroid with uniform wall thickness: 

a -- b = 68.5mm 

t - t m  = 16mm 

R = 457 mm 

In each case, the respective graphs (Figs. 7, 8 and 9) show the distribution of hoop 
stress around the circumference of the section. In most cases satisfactory agreement 
is obtained between the various alternative solutions, particularly in the regions 
where the greatest stresses are to be found. The only exception to this is in the case of  
the thin shell toroid, where the analytical solution clearly neglects any bending 
stresses which may be present. A closer approximation to the true maximum stress 
may be obtained if the membrane stress is calculated using the mean, instead of the 
internal, dimensions. In the case of cross-section ovality, the solutions obtained by 
Haigh's method and by strain energy methods show a very close agreement, but for 
,most practical purposes the solution due to Haigh would be considered preferable 
as it requires less analysis and does not require the use of the rather specialised tables 
of elliptic integrals. 
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Stresses in a cylinder of elliptical cross-section (inside face). 

Even with the greatly exaggerated wall thinning ratios of 3 to 1 the membrane 
solution compares well with the exact stress function solution and it can be seen from 
Fig. 8 that the bending stresses account for only a small proportion of the total 
stresses in the cylinder wall. 

6. THE EFFECT OF HIGHER ORDER STRAIN COMPONENTS 

All the methods considered in the other sections of this paper are based on the linear 
theory of elasticity in which the strains and displacements are assumed small. The 
inference in the latter case is that the dimensions of the body do not significantly 
change. This may not be the case for rod-like or plate-like structures, where, 
although the strains are small, the displacements may be large enough to modify the 
linear theory, if membrane forces are present. The classical theory of compression 
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STRESS FUNCTION SOLUTION 
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Fig.  8. Stress  on  the  ins ide  face  o f  a n  eccen t r ic  bo re  cy l inder .  
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Fig.  9. Stresses  in a c i r c u l a r  t o ro id .  
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instability (e.g. the well known Euler and eccentric struts) takes account of the lateral 
deflections of the rod or plate, which may be sutticient to cause appreciable increases 
in the bending moments due to the external forces. In the case of the wall of an oval 
pipe the effect is reversed and the tensile membrane stresses will tend to reduce the 
lateral deflections due to internal pressure. 

There appears to be no analytical solution for the case of the oval pipe, nor indeed 
is there any reliable method of estimating if the effect of the membrane stresses is 
appreciable. A possible approach is to use the finite element method modified to 
allow for the change in geometry of the cross-section. The standard small deflection 
method has to be modified in two respects; first by increasing the pressure in steps 
and modifying the section co-ordinates for each step and, secondly, by introducing 
the higher order strain components. In the present case this means replacing the 
expressions: 

by 

t~ x = - -  
~U x ~Uy 
~x and ~y = 

G=--~-x + 2 \ a x  ] and ey=~-y  + ~ \ ~ y }  

This change allows for the rotations of the elements to be appreciable, although the 
strains are still small. The other higher order strain components are still negligible 
unless the strains themselves become large, which is unlikely in the present 
application. A simple linear solution is precluded and an iterative approach is 
necessary. It is obviously useful to be able to estimate the accuracy of a linear 
solution and a common method of assessment is to compare the lateral 
displacements with the thickness of the wall. In the example chosen in Section 5, the 
maximum lateral displacement is of the order of 1 ~ of the pipe wall thickness. It is 
probable that in this case the effects of change of geometry and the higher order 
strain components are negligible and that the linear elastic solution is accurate. This 
might not be the case, however, if large deformations due to creep were being 
considered. 

7. U N I F I C A T I O N  OF F O R M U L A E  

When the three individual effects are present together, some method of combining 
the individual formulae has to be used. The technique usually adopted in thin shell 
analysis is to obtain two individual solutions, one for membrane stresses only and 
the other for bending stresses only. A complete solution is then obtained by simply 
adding the two together. Adopting this technique, the only bending stresses 
considered are those due to ovality of cross-section and so Haigh's result alone 
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provides half of the complete solution. The membrane stresses may be obtained by 
using the formula for a thin shell toroid given in Section 4 but the wall thickness used 
in the calculation will be that given by the formula in Section 3, where an eccentric 
bore tube was considered. 

The formulae needed for a complete solution are given below and a pictorial 
definition of the symbols is given in Fig. 6. 

Let 

a +  b t,. 
ri - -  2 r , ,  = r i + 2 

and t o = thickness for a given angle, 0. Then the bending stress due to Haigh is given 
by: 

3p'o E O'b - -  2 ' 3 COS 20 
(1 

t,, 1 +  2E \ t m / d  

while the toroid membrane stress is given by: 

Prm F 2R + r , , s in01 

The addition of  these gives a total hoop stress: 

E 1 1 } a ° = P i ~ o ' L - R + r ~ s - ~ n O  + t~ l+P(1-2-EV2)(2r')3\-i-m~] cos20 

Figure 10 shows a comparison of  the results obtained by this method and by a finite 
element analysis for the pipe bend with the following dimensions: 

a = 68.5 mm 
b = 60.9 mm 
R = 457 mm 
t i - 17.8 mm 
t o = 14.2 mm 

t m = 16  mm 

when subjected to an internal pressure of 19 N/ram 2. 
It has been assumed throughout this analysis that the maximum hoop stresses will 

occur on the inside face of  the tube and in general this is so. If, however, doubts do 
exist about the location of  the greatest stresses it is a fairly simple task to re-arrange 
the formulae to give stresses on the outside face of  the tube. 
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Fig. 10. Stresses in a complete pipe bend (inside face). 

8. DISCUSSION 

Although all three geometrical irregularities contribute to the variation of stress in 
pipe bends it can be seen by comparing Figs. 7 and l0 that the overall stress 
distribution is most greatly influenced by the ovality of the pipe cross-section. 
Because of this, care must be exercised when calculating the dimensions of a pipe 
required for producing a safe bend, particularly if the Standards being used (e.g. 
BS806) appear to make no quantitative allowance for the effects of ovality. 

For example, consider a system of pipework made up of straight pipes with 
dimensions similar to those of the pipe bend considered in Section 7 and designed to 
work at a maximum stress level of 100N/mm 2. BS806 requires that the wall 
thickness of any pipe used to manufacture a bend for the same pipework system be 
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greater than that of  a straight pipe by a factor of  1.125. This increase in wall 
thickness satisfactorily allows for the toroidal and wall thinning effects in the pipe 
bend and an analysis based on these two irregularities alone suggests a stress of  not 
greater than 96 N /mm 2, i.e. within the 100 N / m m  2 design limit. 

Section 9.3 of  BS806 requires that the ovality 6fcross-section of a pipe bend shall 
not exceed 5 ~o but gives no indication of the stresses which will arise for any 
particular degree of  deformation. In fact, when the allowable 5 ~ ovality is included 
in the calculation, the new maximum stress in the pipe bend rises to over 136 N/mm 2, 
well outside the design limit. Although it has been shown that high stresses may 
occur in piping installation, it should be noted that failures attributable to the effects 
discussed in this paper do not happen as frequently as one would expect. One 
possible reason is that when stresses do occur which are large enough to be 
detrimental to the life of  the pipe bend, rapid creep deformation may also take place, 
with the result that the cross-section becomes more circular and ovality stresses will 
be less significant. 

An investigation into this problem is currently being undertaken. 
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